Scientific Opportunities and Emerging Public Health Issues at the NIH: A View from NIAID

Anthony S. Fauci, M.D.
Director
National Institute of Allergy and Infectious Diseases
National Institutes of Health
April 27, 2009
Paradigm for NIH Research

- Basic Research
- Scientific Opportunities
- New Technologies
- Public Health Needs

NIH Institute or Center

New Interventions to Improve Health

Discoveries
Paradigm for NIAID Research

Scientific Opportunities

New Technologies

Basic Research

Discoveries

NIAID Research in:
- Immunology
- Microbiology
- Infectious Diseases

Public Health Needs

New Interventions to Improve Health
New Institutes/Centers

Scientific Opportunities

Public Health Needs

Expanded Mandate and/or Resources for Existing Institutes/Centers

New Institutes/Centers
Evolving Public Health Challenges

- Shift from Acute to Chronic Conditions
- Aging Population
- Health Disparities
- Emerging and Re-emerging Infectious Diseases
- Emerging Non-communicable Diseases - Obesity
Examples of Key Issues that Have Shaped Individual ICs

- **NIDDK**: Obesity epidemic
- **NHLBI**: Discovery of modifiable risk factors for heart disease
- **NCI**: Genomics to understand molecular basis of cancer
- **NIAMS**: Arthritis in an aging population
- **NIA**: Alzheimer’s disease
- **NINR**: Increase in chronic diseases and need for improved symptom management
- **NICHD**: Understanding early developmental processes
- **NIBIB**: Convergence between engineering and life sciences
- **FIC**: Global Health
- **NIDCR**: Relationship of oral health to overall health and well-being
- **NCRR**: Clinical and Translational Science Award program to move research results rapidly from discovery to practice
- **NINDS**: Identification of disease genes and their role in pathology
- **NIDA**: Drug abuse treatment in criminal justice settings to improve public health/safety
Growth of the National Institutes of Health

- 1948: 6 Institutes
- 1950: 8 Institutes & Divisions
- 1960: 11 Institutes, Centers & Divisions
- 1965: 14 Institutes, Centers & Divisions
- 1975: 20 Institutes, Centers & Divisions
- 1990: 22 Institutes, Centers & Divisions
- 2009: 27 Institutes & Centers
NIAID in 1980

- Budget: ~$215 million
- Sixth largest IC

- Microbiology & Infectious Diseases
 - $128M
 - 60%

- Immunology, Allergic & Immunologic Diseases
 - $87M
 - 40%

Total Budget: $215M
A Premature Declaration of Victory Over Infectious Diseases

"We can look forward with confidence to a considerable degree of freedom from infectious diseases at a time not too far in the future. Indeed... it seems reasonable to anticipate that within some measurable time... all the major infections will have disappeared."

Infectious Diseases Cause ~24% of All Deaths Worldwide

Total Deaths: ~58.8 Million

Source: WHO, 10/2008
NIAID: Transforming Issues Since 1980

- HIV/AIDS
- Global Health
- Biodefense
- Other emerging/re-emerging infectious disease issues
Examples of Technologies and Disciplines that Have Transformed Infectious and Immunological Disease Research

- Genomics and other “omics”
- Array technologies
- Nanotechnology
- Synthetic chemistry
- Robotics
- Computer modeling
- Imaging
- Molecular and genetic epidemiology
- Monoclonal antibodies/fusion proteins/recombinant cytokines
- MHC tetramers
- FACS analysis/cell surface markers/CD antigens
- Systems biology
- Bioinformatics
Evolution of the NIAID Budget

- **1980**: $215M
- **1998**: $1.35B
- **2008**: $4.58B

- **HIV/AIDS**
 - 1980: 52%
 - 1998: 33%
 - 2008: 32%

- **Non-AIDS**
 - 1980: 48%
 - 1998: 48%
 - 2008: 32%
Note: FY 2008 includes $22M Emergency Supplement for NIAID.
June 5, 1981

Pneumocystis Pneumonia - Los Angeles

In the period October 1980 - May 1981, 5 young men, all active homosexuals, were treated for biopsy-confirmed *Pneumocystis carinii* pneumonia at 3 different hospitals in Los Angeles, California. Two of the patients died. All 5 patients had laboratory-confirmed previous or current cytomegalovirus (CMV) infection and candidal mucosal infection. Case reports of these patients follow.

July 4, 1981

Kaposi's Sarcoma and Pneumocystis Pneumonia Among Homosexual Men - New York City and California

During the past 30 months, Kaposi's sarcoma (KS), an uncommonly reported malignancy in the United States, has been diagnosed in 26 homosexual men (20 in New York City (NYC), 6 in California). The 26 patients range in age from 26-51 years (mean 39 years). Eight of these patients died (7 in NYC, 1 in California) - all 8 within 24 months after KS was diagnosed.
Adults and Children Estimated to be Living with HIV, 2007

Global Total: ~33 million

Source: UNAIDS, 7/2008
NIAID HIV/AIDS Research Funding

Fiscal Year

Dollars in Millions

$1.56B (est.) (P.B.)
Advances in AIDS Research, 1981-2009

- Etiology
- Diagnosis
- Molecular Virology and Epidemiology
- Pathogenesis
- Natural History
- Treatment
- Prevention
- Vaccine Development
FDA-Approved Antiretroviral Drugs

NRTI
- Zidovudine
- Didanosine
- Zalcitabine
- Stavudine
- Lamivudine
- Abacavir
- Tenofovir
- Emtricitabine

NNRTI
- Nevirapine
- Delavirdine
- Efavirenz
- Etravirine

PI
- Saquinavir
- Ritonavir
- Indinavir
- Nelfinavir
- Amprenavir
- Lopinavir
- Atazanavir
- Fosamprenavir

Entry Inhibitor
- Maraviroc

Integrase Inhibitor
- Raltegravir

Combinations
- 6 available, combining 2 or 3 drugs

Fusion Inhibitor
- Enfuvirtide (T-20)
Antiretroviral Therapy Dramatically Increases Life Expectancy for HIV-Infected Individuals

Life Expectancy of Individuals on Combination Antiretroviral Therapy in High-Income Countries: a Collaborative Analysis of 14 Cohort Studies

Antiretroviral Therapy Cohort Collaboration

An HIV-infected 20-year-old appropriately treated with ART can expect to live to >69 years in high-income countries
<table>
<thead>
<tr>
<th>Decade</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960s</td>
<td>3</td>
</tr>
<tr>
<td>1970s</td>
<td>1</td>
</tr>
<tr>
<td>1980s</td>
<td>5</td>
</tr>
<tr>
<td>1990s</td>
<td>30</td>
</tr>
<tr>
<td>2000s</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>63</td>
</tr>
</tbody>
</table>
The AIDS Research Model
Implications for Other Infectious Diseases of Global Health Importance

Gregory K. Folkers, MS, MPH and Anthony S. Fauci, MD
Selected Infectious Diseases of Global Public Health Importance

<table>
<thead>
<tr>
<th>Disease</th>
<th>Estimated Annual Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Infections</td>
<td>4.3 million</td>
</tr>
<tr>
<td>Diarrheal Diseases</td>
<td>2.2 million</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>2.0 million</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>1.7 million</td>
</tr>
<tr>
<td>Malaria</td>
<td>881,000</td>
</tr>
<tr>
<td>Vaccine Preventable Childhood Diseases</td>
<td>847,000</td>
</tr>
<tr>
<td>(measles, pertussis, tetanus, etc.)</td>
<td></td>
</tr>
<tr>
<td>“Neglected” Tropical Diseases</td>
<td>530,000</td>
</tr>
<tr>
<td>(schistosomiasis, hookworm infection, leishmaniasis, trypanosomiasis, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

Global Health Research at NIAID

NIAID Funding for International Research, 1980-2008

Countries with NIAID-Funded Activities, FY2008 (n = 90)
The Global Community is Faced with Numerous Health Challenges

- Infectious Diseases
- Heart Disease
- Obesity
- Mental Health
- Accidents/Injuries
- Cancer
- Diabetes
- Aging
- Child Health
- Many Others

Total annual deaths > 57 million
Total annual DALYs > 1.4 billion
Emerging Infections: A Perpetual Challenge

DM Morens, GK Folkers & AS Fauci

“For centuries a fundamental challenge to the existence and well-being of societies -- as reflected by scientific attention, as well as in art, religion, and culture -- emerging infections remain among the principal challenges to human survival.”
Global Examples of Emerging and Re-Emerging Infectious Diseases

- Typhoid fever
- Monkeypox
- Adenovirus 14
- Anthrax
- Bioterrorism
- Nipah virus
- Hantavirus pulmonary syndrome
- PLAGUE
- New Emerging
- Re-emerging/resurging
- Deliberately emerging

Global Examples of Emerging and Re-Emerging Infectious Diseases

- West Nile virus
- Cryptosporidiosis
- MRSA
- Cyclosporiasis
- E. coli O157:H7
- Human monkeypox
- Adenovirus 14
- Anthrax
- Bioterrorism
- Hantavirus pulmonary syndrome
- Dengue
- Yellow fever
- Human African trypanosomiasis
- Cholera
- Marburg hemorrhagic fever
- MDR/XDR tuberculosis
- HIV
- Nipah virus
- Hendra virus
- Enterovirus 71
- Human monkeypox
- Plague
- Chikungunya fever

- Newly emerging
- Re-emerging/resurging
- “Deliberately emerging”
Naturally Occurring Infectious Disease Threats

Bioterror Threats
NIAID Funding for Biodefense and Emerging Infectious Diseases Research, 2000-2009

Fiscal Year

Dollars in Millions

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

$32.7M $1.64B

(est.)
http://www.niaid.nih.gov/biodefense
Biodefense and Emerging Infectious Diseases (EID) Research Priorities

- Therapeutics
- Vaccines
- Diagnostics
- Basic Research
- Genomics
- Expansion of Research Capacity
Bioterror Threats ↔ Naturally Occurring Infectious Disease Threats
Influenza

- Re-emerging disease (seasonal flu)
- Newly emerging disease (potential pandemic flu)
The Burden of Seasonal Influenza

- 250,000 to 500,000 deaths globally/yr
- 36,000 deaths and >200,000 hospitalizations/yr in U.S.
- $37.5 billion in economic costs/yr in U.S. related to influenza and pneumonia

Sources: CDC, WHO, Am. Lung. Assoc.
H5N1 Influenza Cases, 2003-2009

Total: 420 WHO laboratory-confirmed cases including 257 deaths

Source: WHO and OIE (World Organization for Animal Health), 4/21/2009
The Influenza Pandemic of 1918-1919

- 25-30% of world’s population (~500 million people) fell ill
- >50 million deaths worldwide; ~60% percent in people ages 20-45
- >500,000 deaths in United States; 196,000 in October, 1918 alone

Source: WHO, 1/2005
Pandemic Influenza Preparedness Strategy and Implementation

- International Surveillance
- Domestic Surveillance
- Vaccines
- Antivirals
- Communications
- State and Local Preparedness
NIAID Influenza Research Funding

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Dollars in Millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$15M</td>
</tr>
<tr>
<td>2002</td>
<td>$17M</td>
</tr>
<tr>
<td>2003</td>
<td>$50M</td>
</tr>
<tr>
<td>2004</td>
<td>$105M</td>
</tr>
<tr>
<td>2005</td>
<td>$155M</td>
</tr>
<tr>
<td>2006</td>
<td>$196M</td>
</tr>
<tr>
<td>2007</td>
<td>$261M</td>
</tr>
<tr>
<td>2008</td>
<td>$268M*</td>
</tr>
</tbody>
</table>

*Estimate; figure using new RCDC methodology is $186M.
NIAID Research: A Dual Mandate

Maintain and “grow” a robust basic and applied research portfolio in microbiology, infectious diseases, immunology and immune-mediated diseases

Respond rapidly to new and emerging disease threats

New/Improved Interventions
Transforming medicine and health through discovery

NIH