GMP Facilities at the NIH Clinical Center

John I. Gallin, M.D. Director, NIH Clinical Center September 14, 2010

Clinical GMP Facilities

Pharmaceutical Development Service

Positron Emission Tomography

Cell Processing Service

Pharmaceutical Development Section Pharmacy Department

George Grimes, RPh, BS Pharm, Chief

In existence sine 1956 - - - - New Facility 2010

Pharmaceutical Development Section

- Product Development
- Analytical and Quality Control
- Pharmacokinetics

Pharmaceutical Development Section Functions

- Responsible for ~1100 investigational drugs currently studied at the CC
- Formulates tablets, capsules, sterile parenterals, and topical products, including placebos
- Ensures that raw materials used and finished products are suitable for human use
- Maintains accountability records for sponsor and FDA review
- Assists in filing INDs

Manufacturing Capability (8 hour day)

- 75,000 capsules
- 150,000 tablets
- 220 liters
- 5,000 syringes

• 8,000 vials (includes vaccines and biologics)

Capacity could be tripled by operating 3 shifts.

Department of Positron Emission Tomography

Peter Herschovitch, M.D., Chief

PET Resources

Three medical cyclotrons

- CS-30 (4-particle; 1985)
- Two GE PETtrace cyclotrons

Radiochemistry

- 10 hot cells for synthesis of radiopharmaceuticals
- Lab for radiopharmaceutical QC and dispensing

Scanners

- Three GE Advance whole body scanners (PET/CT scanner in procurement)
- High Resolution Research Tomograph

Cyclotron Radionuclides

Standard PET nuclides

Other PET and non-PET nuclides (CS-30 cyclotron)

Radionuclide	Half-Life (min)
O-15	2
N-13	10
C-11	20.4
F-18	110

Radionuclide	Half-Life (hrs)
At-211	7.2
Br-76	16.2
Cu-60	0.40
Cu-64	12.7
Bi-205	367.4
I-124	100.2
Pb-203	51.9
Re-186	90.6
Sr-85	1556.1
Tc-94m	0.88
Y-86	14.7
Zr-89	78.4

PET Radiopharmaceuticals

[¹⁸ F]FDG	glucose metabolism (brain, body)
[¹⁵ O]water	blood flow (brain, body)
[¹⁸ F]FDOPA	presynaptic dopaminergic function (brain); NETs
[¹⁸ F]FDopamine	peripheral sympathetic function, NETs (body)
[¹³ N]ammonia	myocardial perfusion
[¹¹ C]raclopride	dopamine D2 receptors (brain)
[¹ C]palmitic acid	fatty acid metabolism
[¹¹ C]arachidonic acid	second messenger via PI turnover (brain)
[¹⁸ F]FP-TZTP	muscarinic acetylcholine M2 receptors (brain)
[¹⁸ F]FCWAY	serotonin 5HT1A receptors (brain)
[¹¹ C]carbon monoxide	blood volume (brain, body)
[''C]flumazenil	benzodiazepine receptors (brain)
[¹¹ C]docosahexaenoic acid	incorporation of DHA (brain)
[¹ C]DASB	serotonin transporters (brain)
[¹¹ C]DTBZ (2006)	VMAT2 (brain, body)
[¹¹ C]leucine (2006)	protein synthesis rate (brain, body)
[^{94m} Tc]Sestamibi (2007)	MDR probe in cancer
[¹¹ C]NNC (2007)	dopamine D1 receptors (brain)
[¹⁸ F]fallypride (2007)	dopamine D2 receptors (brain)
[¹¹ C]acetate (2008)	prostate cancer (membrane lipid)
[¹¹ C]carfentanil (2010)	opiate receptors (IND in preparation)

PET GMP Facility

Purpose: Manufactures GMP radiopharmaceuticals

- PET scans for patients under IRB-approved protocols
- 21 PET radiopharmaceuticals currently available
- New GMP facility will replace 1985 facility

New PET GMP Facility

- Location: 6,280 sq ft on the B3 level of CRC
- Will include:
 - Up to 19 hot cells to handle large (Ci) amounts of radioactivity
 - Clean room
 - Analytical laboratory for quality control
- Capabilities:
 - Meets FDA GMP regulations
 - Doubles current capacity
 - Extramural shipment of GMP F-18 radiopharmaceuticals (2-hour half-life)

Cell Processing Section Department of Transfusion Medicine

David Stroncek, M.D., Chief

Mission:

Provides cellular and gene therapies

Cell Processing Section

Resources:

- Product Development Laboratory
- GMP Laboratory
- Regulatory affairs

Standard of Care Activities:

- Supports hematopoietic stem cell transplant programs
- IND protocols for Phase I/II Clinical Trials Activities:
 - Gene Therapy
 - Dendritic Cells for Cancer Therapy
 - Cytotoxic Cells for Cancer/Lymphoma Therapy
 - Donor Leukocyte Infusions

NIH Bone Marrow Stromal Cell (BMSC) Transplant Center

Cell Processing Manufacturing Capability

- 12 hour days, 5 days a week
 - 25 intense procedures could be performed each week; or
 - 8 to 12 products could be produced per week
- 24 hour days, 5 days a week
 - The capacity could be doubled to 16 to 24 products per week
- 24 hour days, 7 days a week
 - The theoretical capacity is 23 to 35 products per week

In Conclusion...

The Clinical Center's three GMP facilities support the NIH intramural programs but could be expanded to assist outside investigators.